Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
نویسندگان
چکیده
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples. AMS (MOC) Subject Classification 90C25; 90C59; 15A52.
منابع مشابه
Lowest-rank Solutions of Continuous and Discrete Lyapunov Equations Over Symmetric Cone
The low-rank solutions of continuous and discrete Lyapunov equations are of great importance but generally difficult to achieve in control system analysis and design. Fortunately, Mesbahi and Papavassilopoulos [On the rank minimization problems over a positive semidefinite linear matrix inequality, IEEE Trans. Auto. Control, Vol. 42, No. 2 (1997), 239-243] showed that with the semidefinite cone...
متن کاملGuaranteed Minimum Rank Approximation from Linear Observations by Nuclear Norm Minimization with an Ellipsoidal Constraint
The rank minimization problem is to find the lowest-rank matrix in a given set. Nuclear norm minimization has been proposed as an convex relaxation of rank minimization. Recht, Fazel, and Parrilo have shown that nuclear norm minimization subject to an affine constraint is equivalent to rank minimization under a certain condition given in terms of the rank-restricted isometry property. However, ...
متن کاملIterative Reweighted Algorithms for Matrix Rank Minimization Iterative Reweighted Algorithms for Matrix Rank Minimization
The problem of minimizing the rank of a matrix subject to affine constraints has many applications in machine learning, and is known to be NP-hard. One of the tractable relaxations proposed for this problem is nuclear norm (or trace norm) minimization of the matrix, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Re...
متن کاملAn approximation theory of matrix rank minimization and its application to quadratic equations
Matrix rank minimization problems are gaining plenty of recent attention in both mathematical and engineering fields. This class of problems, arising in various and acrossdiscipline applications, is known to be NP-hard in general. In this paper, we aim at providing an approximation theory for the rank minimization problem, and prove that a rank minimization problem can be approximated to any le...
متن کاملIterative reweighted algorithms for matrix rank minimization
The problem of minimizing the rank of a matrix subject to affine constraints has applications in several areas including machine learning, and is known to be NP-hard. A tractable relaxation for this problem is nuclear norm (or trace norm) minimization, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Reweighted Least...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 52 شماره
صفحات -
تاریخ انتشار 2010